Laminocupy-cli¶
Laminocupy-cli is a command-line interface for GPU reconstruction of laminographic data. All preprocessing operations are implemented on GPU with using cupy library.
Features¶
List here
the module features
Contribute¶
Documentation: https://laminocupy.readthedocs.io/en/latest/#
Issue Tracker: https://github.com/nikitinvv/laminocupy-cli/issues
Source Code: https://github.com/nikitinvv/laminocupy-cli/
Content¶
Install¶
Create environment with necessary dependencies
(base)$ conda create -n laminocupy -c conda-forge python=3.9 dxchange cupy scikit-build swig pywavelets numexpr astropy olefile opencv
(base)$ conda activate laminocupy
(laminocupy)$ pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
Install the pytorch pywavelets package for ring removal
(laminocupy)$ git clone https://github.com/fbcotter/pytorch_wavelets
(laminocupy)$ cd pytorch_wavelets
(laminocupy)$ pip install .
(laminocupy)$ cd -
Set path to the nvcc profiler (e.g. /local/cuda-11.4/bin/nvcc ) and install laminocupy
(laminocupy)$ export CUDACXX=/local/cuda-11.4/bin/nvcc
(laminocupy)$ git clone https://github.com/nikitinvv/laminocupy-cli
(laminocupy)$ cd laminocupy-cli
(laminocupy)$ python setup.py install
Update¶
laminocupy-cli is constantly updated to include new features. To update your locally installed version:
(laminocupy)$ cd laminocupy-cli
(laminocupy)$ git pull
(laminocupy)$ python setup.py install
Usage¶
Example¶
(laminocupy)$ laminocupy reconstep --file-name /data/2021-12/Duchkov/exp4_ho_130_vertical_0_2018.h5 --remove-stripe-method fw --nproj-per-chunk 32 --nsino-per-chunk 32 --reconstruction-type full --rotation-axis 1198 --lamino-angle 30
More options¶
(laminocupy)$ laminocupy -h
(laminocupy)$ laminocupy reconstep -h
Performance¶
API reference¶
laminocupy_cli Modules:
Credits¶
Citations¶
We kindly request that you cite the following article [A1] if you use laminocupy-cli
- A1
Viktor Nikitin, Aniket Tekawade, Anton Duchkov, Pavel Shevchenko, and Francesco De Carlo. Real-time streaming tomographic reconstruction with on-demand data capturing and 3d zooming to regions of interest. Journal of Synchrotron Radiation, 2022.
References¶
- B1
Viktor Nikitin, Aniket Tekawade, Anton Duchkov, Pavel Shevchenko, and Francesco De Carlo. Real-time streaming tomographic reconstruction with on-demand data capturing and 3d zooming to regions of interest. Journal of Synchrotron Radiation, 2022.